Open Access Open Access  Restricted Access Subscription Access

Analysis of Absorption Coefficient of Covalent Materials

Ajay Kumar Upadhyay

Abstract


The absorption coefficient or ultrasonic attenuation of covalent materials at the range of 1 GHz using the calculated values of mason non-linearity parameter, ultrasonic Gruneisen parameter, thermal relaxation time and Debye average velocity along with ultrasonic wave velocity and elastic constant have been studied. This is useful for understanding the mechanism of interaction between acoustic wave and crystal lattice. Such studies are also essential for assessing the suitability of materials for several practical problems, such as the design of optimum sound transmission systems for ultrasonic delay lines. The result shows that the comparison of the attenuation coefficient of covalent materials along the different directions bring out some systematic features. It can be seen that the attenuation coefficient generally increases with increasing molecular weight and decreasing Debye temperature within the different group of solids.

Full Text:

PDF

References


A.K. Upadhyay, B.S. Sharma. Int J Eng Technol Sci Res. 2017; 4(12).

R.R. Yadav, D. Singh. J Acoust Soc Ind. 2001; 29: 220p.

R.R. Yadav, K. Shanker. Ultrasonics International Conference Proceedings. 1993, 459p.

S.K. Kor, R.R. Yadav, Kailash. J Phys. Soc Jpn. 1986; 55: 207p.

D. Singh, R.R. Yadav, A.K. Tiwari. Indian J Pure Appl Phys. 2002; 40: 845p.

S.K. Kor, R.K. Singh. Acustica. 1994; 80: 83p.

S.D. Lambade, G.G. Sahasrabudhe, S. Rajagopalan. J Appl Phys. 1995; 7: 6525p.

G.G. Sahsrabudhe, S.D. Lambade. J Phys Chem Solids. 1998; 59(5): 789p.

W.P. Mason. Piezoelectric Crystals and Their Applications to Ultasonics. Van Nostrand, Princeton; 1960, 478p.

A. Akhiezer. J Phys (Moscow). 1939; 1: 277p.

W.P. Mason, T.B. Bateman. J Acoust Soc Am. 1964; 36: 644p.

K. Brugger. Phys Rev A. 1965; 137: 1826p.

S.D. Lambade, G.G. Sahasrabudhe, S. Rajagopalan. Phys Rev B. 1995; 51: 15861p.

R. Nava, J. Romero. J Accoust Soc Am. 1978; 64: 529p.

L.G. Merkulov, R.V. Kovalenok, E.V. Konovodehenko. Sov Phys Solid State. 1970; 11: 2241p.

H.H. Barrett, M.G. Hollend. Phys Rev B. 1970; 1: 2538p.

R.K. Varshney, J. Shanker. Phys Stat Sol B. 1984; 122(65): 126–77p.

K. Brugger. Phys Rev A. 1964; 133: 1611p.

G. Leibfried, H. Haln. Z Phys. 1931; 75p.

G. Leibfried, W. Ludwig. Solid State Physics. Vol. 12, New York: Academic Press; 1964, 275p.

S. Mori, Y. Hiki. J Phys Soc Jpn. 1978; 45: 1449p.

A.K. Upadhyay, B.S. Sharma. Indian J Pure Appl Phys. 2011; 49: 30p.




DOI: https://doi.org/10.37628/ijssm.v4i1.50

Refbacks

  • There are currently no refbacks.