Open Access Open Access  Restricted Access Subscription Access

Control of Energy Transfer in Autonomous Photovoltaic System

Carlos Armenta Deu, Alexandre Beaufour


The paper is focused on the study and analysis of autonomous solar photovoltaic systems operating with solar panel of voltages in the range 48 VDC to 220 VDC. The main goal is to design the best system layout to obtain an optimum performance when the solar array is connected to dual voltage external applications of continuous and alternate current, at 12 VDC and 220 VAC. The paper studies different configurations for the solar array and evaluates which one is the best from the energy efficiency point of view as well as the one that minimizes energy losses and reduces the complexity and cost of the installation.

Full Text:



Santos, A. F. B., Duggan, G. P., Lute, C. D., & Zimmerle, D. J. (2018, October). An efficiency comparison study for small appliances operating in dc and ac in minigrids. In 2018 IEEE Global Humanitarian Technology Conference (GHTC) (pp. 1-2). IEEE.

Islam, M. K., Rahman, M. M., & Rabbi, M. F. (2015, December). Transformer less, lower THD and highly efficient inverter system. In 2015 International Conference on Advances in Electrical Engineering (ICAEE) (pp. 293-296). IEEE.

parative study of single phase power inverters based on efficiency and harmonic analysis. i-Manager's Journal on Instrumentation & Control Engineering, 4(1), 1.

Haque, N. M., Ahammad, I., Miah, S., Miki, A. A., & Ahmed, H. (2017). Design and Implementation of Cost Effective Inverter. International Journal of Scientific & Technology Research, 6(10), 269-272p.

Shahid, Z., Khan, S., Alam, A. Z., & Ahmed, M. M. (2014). Current loss comparison of PWM operated transformer-based and transformer-less inverter. International Journal of Advanced Research in Electronics and Communication Engineering, 3(2).

Abdurakhmamov, G., Zakhidov, R. A., Vakhidova, G. S., & Mamatkulova, S. A. (2010). On the criteria of efficiency of power supply to individual households using thermo-and photovoltaic converters. Applied Solar Energy, 46(3), 165-168.

Bratcu, A. I., Munteanu, I., Bacha, S., Picault, D., & Raison, B. (2010). Cascaded dc–dc converter photovoltaic systems: Power optimization issues. IEEE Transactions on Industrial Electronics, 58(2), 403-411.

Hu, Y., Xiao, W., Cao, W., Ji, B., & Morrow, D. J. (2014). Three-port DC–DC converter for stand-alone photovoltaic systems. IEEE Transactions on Power Electronics, 30(6), 3068-3076.

Zeng, J., Qiao, W., & Qu, L. (2015). An isolated three-port bidirectional DC–DC converter for photovoltaic systems with energy storage. IEEE transactions on industry applications, 51(4), 3493-3503.

Nathan, K., Ghosh, S., Siwakoti, Y., & Long, T. (2018). A new DC–DC converter for photovoltaic systems: coupled-inductors combined Cuk-SEPIC converter. IEEE Transactions on Energy Conversion, 34(1), 191-201.

Raghavendra, K. V. G., Zeb, K., Muthusamy, A., Krishna, T. N. V., Kumar, S. V. P., Kim, D. H., & Kim, H. J. (2019). A comprehensive review of DC–DC converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics, 9(1), 31.

Chao, K. H., Tseng, C., Huang, H., Liu, G., & Huang, L. C. (2013). Design and implementation of a bidirectional DC-DC converter for stand-alone photovoltaic systems. energy, 4, 8.

Abdel-Rahim, O., & Wang, H. (2020). A new high gain DC-DC converter with model-predictive-control based MPPT technique for photovoltaic systems. CPSS Transactions on Power Electronics and Applications, 5(2), 191-200.

Zeng, J., Qiao, W., & Qu, L. (2012, September). A single-switch isolated DC-DC converter for photovoltaic systems. In 2012 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 3446-3452). IEEE.

Gu, Y., Chen, Y., Zhang, B., Qiu, D., & Xie, F. (2018). High step-up DC–DC converter with active switched LC-network for photovoltaic systems. IEEE Transactions on Energy Conversion, 34(1), 321-329.

Scholten, D. M., Ertugrul, N., & Soong, W. L. (2013, September). Micro-inverters in small scale PV systems: A review and future directions. In 2013 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-6). IEEE.

Daher, S., Schmid, J., & Antunes, F. L. (2008). Multilevel inverter topologies for stand-alone PV systems. IEEE transactions on industrial electronics, 55(7), 2703-2712.

Arshadi, S. A., Poorali, B., Adib, E., & Farzanehfard, H. (2015). High step-up DC–AC inverter suitable for AC module applications. IEEE Transactions on Industrial Electronics, 63(2), 832-839.

Ozdemir, S., Altin, N., & Sefa, I. (2014). Single stage three level grid interactive MPPT inverter for PV systems. Energy Conversion and Management, 80, 561-572.

Ahmed, M. E. S., Orabi, M., & AbdelRahim, O. M. (2013). Two‐stage micro‐grid inverter with high‐voltage gain for photovoltaic applications. IET Power Electronics, 6(9), 1812-1821.

Moussa, H., Fadel, M., & Kanaan, H. (2012, November). A single-stage DC-AC boost topology and control for solar PV systems supplying a PMSM. In 2012 International Conference on Renewable Energies for Developing Countries (REDEC) (pp. 1-7). IEEE.

Ribeiro, H., Pinto, A., & Borges, B. (2010, September). Single-stage DC-AC converter for photovoltaic systems. In 2010 IEEE Energy Conversion Congress and Exposition (pp. 604-610). IEEE.

Choi, H., Ciobotaru, M., Jang, M., & Agelidis, V. G. (2015). Performance of medium-voltage DC-bus PV system architecture utilizing high-gain DC–DC converter. IEEE Transactions on Sustainable Energy, 6(2), 464-473.

Sayed, S., Elmenshawy, M., Elmenshawy, M., Ben-Brahim, L., & Massoud, A. (2018, April). Design and analysis of high-gain medium-voltage DC-DC converters for high-power PV applications. In 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018) (pp. 1-5). IEEE.

Kusic, G. L., Reed, G. F., Svensson, J., & Wang, Z. (2011, March). A case for medium voltage DC for distribution circuit applications. In 2011 IEEE/PES Power Systems Conference and Exposition (pp. 1-7). IEEE.

Alhurayyis, I., Elkhateb, A., & Morrow, D. J. (2020). Isolated and non-isolated DC-to-DC converters for medium voltage DC networks: A review. IEEE Journal of Emerging and Selected Topics in Power Electronics.

Islam, M. R., Mahfuz-Ur-Rahman, A. M., Muttaqi, K. M., & Sutanto, D. (2018). State-of-the-art of the medium-voltage power converter technologies for grid integration of solar photovoltaic power plants. IEEE Transactions on Energy Conversion, 34(1), 372-384.

Alhuwaishel, F., Allehyani, A., Al-Obaidi, S., & Enjeti, P. (2018, June). A new medium voltage DC collection grid for large scale PV power plants with SiC devices. In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) (pp. 1-8). IEEE.

Alassi, A., Al-Aswad, A., Gastli, A., Brahim, L. B., & Massoud, A. (2017, May). Assessment of isolated and non-isolated DC-DC converters for medium-voltage PV applications. In 2017 9th IEEE-GCC Conference and Exhibition (GCCCE) (pp. 1-6). IEEE.

Nilsson, D., & Sannino, A. (2004, June). Efficiency analysis of low-and medium-voltage DC distribution systems. In IEEE Power Engineering Society General Meeting, 2004. (pp. 2315-2321). IEEE.

Barreto, L. H., Praça, P. P., Henn, G. A., Câmara, R. A., Ranoyca, N. A. L. S., & Oliveira, D. S. (2011, March). High voltage gain boost converter battery charger applied to PV systems. In 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 1526-1531). IEEE.

Zhang, C., Du, S., & Chen, Q. (2012). A novel scheme suitable for high-voltage and large-capacity photovoltaic power stations. IEEE Transactions on Industrial Electronics, 60(9), 3775-3783.

Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650-665.

Wang, J., Sun, K., Xue, C., Liu, T., & Li, Y. (2021). Multi-Port DC-AC Converter with Differential Power Processing DC-DC Converter and Flexible Power Control for Battery ESS Integrated PV Systems. IEEE Transactions on Industrial Electronics, 69(5), 4879-4889.

Pan, C. T., Cheng, M. C., & Lai, C. M. (2011). A novel integrated dc/ac converter with high voltage gain capability for distributed energy resource systems. IEEE Transactions on Power Electronics, 27(5), 2385-2395.

Wai, R. J., Lin, C. Y., Lin, C. Y., Duan, R. Y., & Chang, Y. R. (2008). High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage. IEEE Transactions on Industrial Electronics, 55(10), 3702-3714.

Lee, C. T., Chen, Y. M., Chen, L. C., & Cheng, P. T. (2012, February). Efficiency improvement of a DC/AC converter with the power decoupling capability. In 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (pp. 1462-1468). IEEE.

Ertl, H., Kolar, J. W., & Zach, F. C. (2002). A novel multicell DC-AC converter for applications in renewable energy systems. IEEE Transactions on industrial Electronics, 49(5), 1048-1057.

Hu, X., Zhang, Y., Liu, X., Yu, Z., He, T., & Mao, L. (2020). A non-isolated step-up DC-AC converter with reduced leakage current for grid-connected photovoltaic systems. IEEE Access, 8, 71907-71916.

Azri, M., Rahim, N. A., & Elias, M. F. M. (2014). Transformerless DC/AC converter for grid-connected PV power generation system. Arabian Journal for Science and Engineering, 39(11), 7945-7956.

Liao, Z., & Ruan, X. (2008, September). Control strategy of bi-directional DC/DC converter for a novel stand-alone photovoltaic power system. In 2008 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.

Das, M., & Agarwal, V. (2014, March). A novel control strategy for stand-alone solar PV systems with enhanced battery life. In 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014 (pp. 2880-2887). IEEE.

Agrawal, S., Umanand, L., & Subba Reddy, B. (2021). Bidirectional current-fed converter for high gain DC–DC and DC–AC applications. In Proceedings of Symposium on Power Electronic and Renewable Energy Systems Control (pp. 101-111). Springer, Singapore.

Talaat, Y., Hegazy, O., Amin, A., & Lataire, P. (2014, March). Control and analysis of multiphase Interleaved DC/DC Boost Converter for photovoltaic systems. In 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER) (pp. 1-5). IEEE.

Zhang, N., Sutanto, D., & Muttaqi, K. M. (2016, September). A buck-boost converter based multi-input DC-DC/AC converter. In 2016 IEEE international conference on power system technology (POWERCON) (pp. 1-6). IEEE.

Badawy, A. D. (2015). Current source dc-dc and dc-ac converters with continuous energy flow.

Grundmann, M. (2010). Physics of semiconductors (Vol. 11, pp. 401-472). Berlin: Springer.

Gray, J. L. (2003). The physics of the solar cell. Handbook of photovoltaic science and engineering, 2, 82-128.

Loferski, J. J. (1956). Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. Journal of Applied Physics, 27(7), 777-784.

Neville, R. C. (1995). Solar energy conversion: the solar cell. Elsevier.

Irvine, S. (2017). Solar cells and photovoltaics. In Springer handbook of electronic and photonic materials (pp. 1-1). Springer, Cham.

Vidyanandan, K. V. (2017). An overview of factors affecting the performance of solar PV systems. Energy Scan, 27(28), 216.

Islam, M. K., Ahammad, T., Pathan, E. H., Mushfiqul, A. N. M., & Khandokar, M. R. H. (2011). Analysis of maximum possible utilization of solar radiation on a solar photovoltaic cell with a proposed model. International journal of modeling and optimization, 1(1), 66.

Sites, J. R., & Mauk, P. H. (1989). Diode quality factor determination for thin-film solar cells. Solar cells, 27(1-4), 411-417.

Mialhe, P., Charles, J. P., Khoury, A., & Bordure, G. (1986). The diode quality factor of solar cells under illumination. Journal of Physics D: Applied Physics, 19(3), 483.

Sen, K., & Tyagi, B. P. (1984). Diode quality factor in polycrystalline solar cells. Journal of applied physics, 56(4), 1240-1241.

Charles, J. P., Abdelkrim, M., Muoy, Y. H., & Mialhe, P. (1981). A practical method of analysis of the current-voltage characteristics of solar cells. Solar cells, 4(2), 169-178.

Rusirawan, D., & Farkas, I. (2014). Identification of model parameters of the photovoltaic solar cells. Energy Procedia, 57, 39-46.

McEvoy, A., & Markvart, T. (Eds.). (2003). Practical handbook of photovoltaics: fundamentals and applications. Elsevier.

Shannan, N. M. A. A., Yahaya, N. Z., & Singh, B. (2013, November). Single-diode model and two-diode model of PV modules: A comparison. In 2013 IEEE International Conference on Control System, Computing and Engineering (pp. 210-214). IEEE.

Veissid, N., & De Andrade, A. M. (1991). The I–V Silicon Solar Cell Characteristic Parameters Temperature Dependence. An Experimental Study using the Standard Deviation Method. In Tenth EC Photovoltaic Solar Energy Conference (pp. 43-47). Springer, Dordrecht.

Greulich, J., Glatthaar, M., & Rein, S. (2010). Fill factor analysis of solar cells' current–voltage curves. Progress in Photovoltaics: Research and Applications, 18(7), 511-515.

Dhass, A. D., Natarajan, E., & Ponnusamy, L. (2012, December). Influence of shunt resistance on the performance of solar photovoltaic cell. In 2012 International conference on emerging trends in electrical engineering and energy management (ICETEEEM) (pp. 382-386). IEEE.

Barbato, M., Meneghini, M., Giliberto, V., Giaffreda, D., Magnone, P., De Rose, R., ... & Meneghesso, G. (2012, June). Effect of shunt resistance on the performance of mc-Silicon solar cells: A combined electro-optical and thermal investigation. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 001241-001245). IEEE.

Singh, P., & Ravindra, N. M. (2012). Analysis of series and shunt resistance in silicon solar cells using single and double exponential models. Emerging Materials Research, 1(1), 33-38.

McMahon, T. J., Basso, T. S., & Rummel, S. R. (1996, May). Cell shunt resistance and photovoltaic module performance. In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996 (pp. 1291-1294). IEEE.

Van Dyk, E. E., & Meyer, E. L. (2004). Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renwable energy, 29(3), 333-344.

Dauwe, S., Mittelstädt, L., Metz, A., & Hezel, R. (2002). Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in Photovoltaics: Research and Applications, 10(4), 271-278.

Hassan, M. M., Iskander, N. N., Abdellatif, S. O., Kirah, K. A., & Ghali, H. A. (2020, August). Investigating parasitic resistance of mesoporous-based solar cells with respect to thin-film and conventional solar cells. In Organic, Hybrid, and Perovskite Photovoltaics XXI (Vol. 11474, pp. 67-73). SPIE.

Tumbleston, J. R., Ko, D. H., Samulski, E. T., & Lopez, R. (2010). Nonideal parasitic resistance effects in bulk heterojunction organic solar cells. Journal of Applied Physics, 108(8), 084514.

Araujo, G. L., & Sanchez, E. (1982). A new method for experimental determination of the series resistance of a solar cell. IEEE Transactions on Electron Devices, 29(10), 1511-1513.

,Bowden, S., & Rohatgi, A. (2001). Rapid and accurate determination of series resistance and fill factor losses in industrial silicon solar cells. Georgia Institute of Technology.

Chan, D. S., & Phang, J. C. (1984). A method for the direct measurement of solar cell shunt resistance. IEEE Transactions on Electron Devices, 31(3), 381-383.

Ali, W., Farooq, H., Rehman, A. U., Awais, Q., Jamil, M., & Noman, A. (2018, November). Design considerations of stand-alone solar photovoltaic systems. In 2018 International conference on computing, electronic and electrical engineering (ICE Cube) (pp. 1-6). IEEE.

Shaahid, S. M., & Elhadidy, M. A. (2004). Prospects of autonomous/stand-alone hybrid (photo-voltaic+ diesel+ battery) power systems in commercial applications in hot regions. Renewable energy, 29(2), 165-177.

Manju, S., & Sagar, N. (2017). Progressing towards the development of sustainable energy: A critical review on the current status, applications, developmental barriers and prospects of solar photovoltaic systems in India. Renewable and Sustainable Energy Reviews, 70, 298-313.

Papadopoulou, E. (2011). Photovoltaic industrial systems: An environmental approach. Springer Science & Business Media.

Hassan, Q. (2021). Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renewable Energy, 164, 375-390.

Kumar, N. M., Subathra, M. P., & Moses, J. E. (2018, February). On-grid solar photovoltaic system: components, design considerations, and case study. In 2018 4th International Conference on Electrical Energy Systems (ICEES) (pp. 616-619). IEEE.

Panhwar, I., Sahito, A. R., & Dursun, S. (2017). Designing off-grid and on-grid renewable energy systems using HOMER Pro software. Journal of International Environmental Application and Science, 12(4), 270-276.

Mihaela, L. G. (2021, June). Method for Designing a Photovoltaic System. In 2021 9th International Conference on Modern Power Systems (MPS) (pp. 1-6). IEEE.

Harrington, S., & Dunlop, J. (1992). Battery charge controller characteristics in photovoltaic systems. IEEE aerospace and electronic systems magazine, 7(8), 15-21.

Çınar, S. M., & Akarslan, E. (2012). On the Design of an Intelligent Battery Charge Controller for PV Panels. Journal of Engineering Science & Technology Review, 5(4).

Khera, N., Rana, N., Narendiran, S., Sahoo, S. K., Balamurugan, M., Karthikeyan, S. P., & Raglend, I. J. (2015, December). Design of charge controller for solar PV systems. In 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) (pp. 149-153). IEEE.

Dakkak, M., & Hasan, A. (2012). A charge controller based on microcontroller in stand-alone photovoltaic systems. Energy Procedia, 19, 87-90.

Jana, J., Samanta, H., Bhattacharya, K. D., & Saha, H. (2018). Design and development of high efficiency five stage battery charge controller with improved MPPT performance for solar PV systems. International Journal of Renewable Energy Research (IJRER), 8(2), 941-953.

Masheleni, H., & Carelse, X. F. (1997). Microcontroller-based charge controller for stand-alone photovoltaic systems. Solar energy, 61(4), 225-230.

Benda, V., & Černá, L. (2020). PV cells and modules–State of the art, limits and trends. Heliyon, 6(12), e05666.

Harmon, C. (2000). Experience curves of photovoltaic technology.

Bower, W. (2000). Inverters—critical photovoltaic balance‐of‐system components: status, issues, and new‐millennium opportunities. Progress in Photovoltaics: Research and Applications, 8(1), 113-126.

Kutkut, N. H., & Divan, D. M. (1996, October). Dynamic equalization techniques for series battery stacks. In Proceedings of Intelec'96-International Telecommunications Energy Conference (pp. 514-521). IEEE.

Hsieh, Y. C., Yu, L. R., & Yang, M. F. (2021). A charge equalization scheme for battery string with charging current allocation. International Journal of Circuit Theory and Applications, 49(9), 2935-2945.

Kutkut, N. H., Divan, D. M., & Novotny, D. W. (1995). Charge equalization for series connected battery strings. IEEE transactions on industry applications, 31(3), 562-568.

Dong, B., Li, Y., & Han, Y. (2014). Parallel architecture for battery charge equalization. IEEE Transactions on Power Electronics, 30(9), 4906-4913.

Speltino, C., Stefanopoulou, A., & Fiengo, G. (2010, June). Cell equalization in battery stacks through state of charge estimation polling. In Proceedings of the 2010 American Control Conference (pp. 5050-5055). IEEE.

Kimball, J. W., Kuhn, B. T., & Krein, P. T. (2007, September). Increased performance of battery packs by active equalization. In 2007 IEEE Vehicle Power and Propulsion Conference (pp. 323-327). IEEE.

Cao, J., Schofield, N., & Emadi, A. (2008, September). Battery balancing methods: A comprehensive review. In 2008 IEEE Vehicle Power and Propulsion Conference (pp. 1-6). IEEE.

Bastidas‐Rodriguez, J. D., Franco, E., Petrone, G., Ramos‐Paja, C. A., & Spagnuolo, G. (2014). Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review. IET Power Electronics, 7(6),pp 1396-1413.

Sarvi, M., Tabatabaee, M. H., & Soltani, I. (2014). A fast maximum power point tracking for mismatching compensation for PV systems under normal and partially shaded conditions. Journal of mathematics and computer science, 8(8),pp 52-74.

Mao, M., Zhang, L., Yang, L., Chong, B., Huang, H., & Zhou, L. (2020). MPPT using modified salp swarm algorithm for multiple bidirectional PV-Ćuk converter system under partial shading and module mismatching. Solar Energy, 209,pp 334-349.

Pendem, S. R., & Mikkili, S. (2018). Modelling and performance assessment of PV array topologies under partial shading conditions to mitigate the mismatching power losses. Solar Energy, 160, pp303-321.


  • There are currently no refbacks.