Open Access Open Access  Restricted Access Subscription Access

PERFORMANCE OF A NEW AMORPHOUS SILICON PANEL

Carlos Armenta Deu

Abstract


The paper evaluates the performance of modified amorphous silicon cells with highly hydrogen doping previously exposed to concentrated solar radiation for a while. Experimental tests have been run to characterize the electric response of the new panel and results have been compared to those of a conventional amorphous silicon cell and to another with high hydrogen doping. Tests have proved there is an improvement in the performance of the cell as well as an increase of the efficiency. Efficiency of the PV panel has been measured obtaining a maximum value near 10%, which results a very good value for an amorphous structure. The results of the experimental tests have shown a rather stable performance of the new panel with solar radiation as for the efficiency is related, with almost constant value for the entire range of daily solar radiation.

Full Text:

PDF

References


Nayak, P. K., Mahesh, S., Snaith, H. J., & Cahen, D. (2019). Photovoltaic solar cell technologies: analysing the state of the art. Nature Reviews Materials, 4(4), 269-285.

Mahtani, P., Kherani, N. P., & Zukotynski, S. (2007, June). The use of amorphous silicon in fabricating a photovoltaic-thermal system. In Proceedings of the 2nd Canadian Solar Buildings Conference.

El Chaar, L., & El Zein, N. (2011). Review of photovoltaic technologies. Renewable and sustainable energy reviews, 15(5), 2165-2175.

Rakesh Tej Kumar, K., Ramakrishna, M., & Durga Sukumar, G. (2018). A review on PV cells and nanocomposite‐coated PV systems. International Journal of Energy Research, 42(7), 2305-2319.

Rathore, N., Panwar, N. L., Yettou, F., & Gama, A. (2021). A comprehensive review of different types of solar photovoltaic cells and their applications. International Journal of Ambient Energy, 42(10), 1200-1217.

Carlson, D. E., & Wronski, C. R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28(11), 671-673.

Carlson, D. E. (1977). Amorphous silicon solar cells. IEEE Transactions on Electron Devices, 24(4), 449-453.

Wronski, C. R., & Carlson, D. E. (2001). Amorphous silicon solar cells (Vol. 199). Imperial College Press, London, UK.

Fahrner, W. R. (2013). Amorphous silicon/crystalline silicon heterojunction solar cells. In Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells (pp. 1-97). Springer, Berlin, Heidelberg.

Ambrosone, G., Coscia, U., Lettieri, S., Maddalena, P., Privato, C., & Ferrero, S. (2002). Hydrogenated amorphous silicon carbon alloys for solar cells. Thin solid films, 403, 349-353.

Green, M. A. (2003). Crystalline and thin-film silicon solar cells: state of the art and future potential. Solar energy, 74(3), 181-192.

Sritharathikhun, J., Moollakorn, A., Kittisontirak, S., Limmanee, A., & Sriprapha, K. (2011). High quality hydrogenated amorphous silicon oxide film and its application in thin film silicon solar cells. Current Applied Physics, 11(1), S17-S20.

Yunaz, I. A., Hashizume, K., Miyajima, S., Yamada, A., & Konagai, M. (2009). Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications. Solar Energy Materials and Solar Cells, 93(6-7), 1056-1061.

Rech, B., & Wagner, H. (1999). Potential of amorphous silicon for solar cells. Applied physics A, 69(2), 155-167.

Bose, S., Mandal, S., Barua, A. K., & Mukhopadhyay, S. (2020). Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells. Journal of Materials Science & Technology, 55, 136-143.

Matsuda, A. (2004). Thin-film silicon–growth process and solar cell application–. Japanese Journal of Applied Physics, 43(12R), 7909.

Lechner, P., & Schade, H. (2002). Photovoltaic thin‐film technology based on hydrogenated amorphous silicon. Progress in Photovoltaics: Research and Applications, 10(2), 85-97.

Urbain, F., Wilken, K., Smirnov, V., Astakhov, O., Lambertz, A., Becker, J. P., ... & Finger, F. (2014). Development of thin film amorphous silicon tandem junction based photocathodes providing high open-circuit voltages for hydrogen production. International journal of photoenergy, 2014.

Carlson, D. E. (1980). Recent developments in amorphous silicon solar cells. Solar Energy Materials, 3(4), 503-518.

Tawada, Y., Kondo, M., Okamoto, H., & Hamakawa, Y. (1982). Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Solar Energy Materials, 6(3), 299-315.

Wilson, J. I. B., & McGill, J. (1978). Amorphous-silicon mis solar cells. IEE Journal on Solid-State and Electron Devices, 2(3.1), S7-S10.

Zhang, C., Song, Y., Wang, M., Yin, M., Zhu, X., Tian, L., & Li, D. (2017). Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using sol–gel based nanoimprinting method. Advanced Functional Materials, 27(13), 1604720.

Galloni, R. (1996). Amorphous silicon solar cells. Renewable Energy, 8(1-4), 400-404.

Zeman, M. (2006). Advanced amorphous silicon solar cell technologies. Thin film solar cells: fabrication, characterization and applications, 1-66.

Koch, C., Ito, M., & Schubert, M. (2001). Low-temperature deposition of amorphous silicon solar cells. Solar Energy Materials and Solar Cells, 68(2), 227-236.

Ren, X., Li, J., Hu, M., Pei, G., Jiao, D., Zhao, X., & Ji, J. (2019). Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications. Applied Energy, 252, 113427.

Giannouli, M., & Yianoulis, P. (2012). Study on the incorporation of photovoltaic systems as an auxiliary power source for hybrid and electric vehicles. Solar Energy, 86(1), 441-451.

Shishavan, A. A., Foresman, E. C., & Toor, F. (2016, June). Performance analysis of crystalline silicon and amorphous silicon photovoltaic systems in Iowa: 2011 to 2014. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 2625-2630). IEEE.

Arsie, I., Cacciato, M., Consoli, A., Petrone, G., Rizzo, G., Sorrentino, M., & Spagnuolo, G. (2006). Hybrid vehicles and solar energy: A possible marriage?. ICAT06, Istanbul, November, 17.

Azidin, F. A., Hannan, M. A., & Mohamed, A. (2013). Renewable energy technologies and hybrid electric vehicle challenges. Prz Elektrotech, 89(8), 150-6.

Sardar, A., & Mubashir, S. (2012). Prospects of solar energy for electric mobility. Auto Tech Review, 1(10), 18-23.

Dalvi, S., Pandey, R., Deshmukh, S., Barad, Y., & Ramteke, R. G. (2018). REVIEW STUDY ON DESIGN AND ANALYSIS OF SOLAR PANNEL FOR ELECTRIC VEHICLE.

Abdelhamid, M., Rhodes, K., Christen, E., & Kok, D. (2018). Solar Panels on Electrified Vehicles. SAE International Journal of Alternative Powertrains, 7(3), 311-322.

Yaqub, M., Rahman, M., Pournorouz, Z., Bostanci, H., Ganta, D., & Xu, Y. (2020). Optimizing Energy Infrastructure of Autonomous Electric Vehicles. In IIE Annual Conference. Proceedings (pp. 1-6). Institute of Industrial and Systems Engineers (IISE).

Garner, I. F. (1991, October). Vehicle auxiliary power applications for solar cells. In 1991 Eighth International Conference on Automotive Electronics (pp. 187-191). IET.

Söderström, T., Haug, F. J., Terrazzoni-Daudrix, V., & Ballif, C. (2008). Optimization of amorphous silicon thin film solar cells for flexible photovoltaics. Journal of Applied Physics, 103(11), 114509.

Hannan, M. A., Azidin, F. A., & Mohamed, A. (2014). Hybrid electric vehicles and their challenges: A review. Renewable and Sustainable Energy Reviews, 29, 135-150.

Deckman, H. W., Wronski, C. R., Witzke, H., & Yablonovitch, E. (1983). Optically enhanced amorphous silicon solar cells. Applied Physics Letters, 42(11), 968-970.

Plentz, J., Andrä, G., Pliewischkies, T., Brückner, U., Eisenhawer, B., & Falk, F. (2016). Amorphous silicon thin-film solar cells on glass fiber textiles. Materials Science and Engineering: B, 204, 34-37.

Green, M. A. (2003). Crystalline and thin-film silicon solar cells: state of the art and future potential. Solar energy, 74(3), 181-192.

Schropp, R. E., & Zeman, M. (1999). New developments in amorphous thin-film silicon solar cells. IEEE transactions on electron devices, 46(10), 2086-2092.

Beaucarne, G. (2007). Silicon thin-film solar cells. Advances in OptoElectronics, 2007.

Green, M. A. (2007). Thin-film solar cells: review of materials, technologies and commercial status. Journal of Materials Science: Materials in Electronics, 18(1), 15-19.

Lechner, P., & Schade, H. (2002). Photovoltaic thin‐film technology based on hydrogenated amorphous silicon. Progress in Photovoltaics: Research and Applications, 10(2), 85-97.

Fthenakis, V. M., Moskowitz, P. D., & Lee, J. C. (1984). Manufacture of amorphous silicon and GaAs thin film solar cells: an identification of potential health and safety hazards. Solar cells, 13(1), 43-58.

Zeman, M. (2006). Advanced amorphous silicon solar cell technologies. Thin film solar cells: fabrication, characterization and applications, 1-66.

Shah, A., & Shah, A. V. (2010). Thin-film silicon solar cells. EPFL press.

Schock, H. W. (1996). Thin film photovoltaics. Applied surface science, 92, 606-616.

Zeman, M. (2010). Thin-film silicon PV technology. Journal of Electrical Engineering, 61(5), 271.

Fischer, D., Dubail, S., Selvan, J. A., Vaucher, N. P., Platz, R., Hof, C., & Ufert, K. D. (1996, May). The" micromorph" solar cell: Extending a-Si: H technology towards thin film crystalline silicon. In Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996 (pp. 1053-1056). IEEE.

Staebler, DL; Wronski, CR (1977). "Cambios de conductividad reversibles en Si amorfo producido por descarga". Letras de Física Aplicada. 31 (4): 292 Código bibliográfico: 1977, Ap. Ph. Letters 31, 292S, doi : 10.1063 / 1.89674 . ISSN 0003-6951.

Kołodziej, A. (2004). "Efecto Staebler-Wronski en silicio amorfo y sus aleaciones" . Revisión de optoelectrónica. 12 (1): 21–32. Consultado el 31 de octubre de 2015.

Branz, Howard M. (15 de febrero de 1999). "Modelo de colisión de hidrógeno: descripción cuantitativa de la metaestabilidad en silicio amorfo". Physical Review B . Sociedad Estadounidense de Física (APS). 59 (8): 5498–5512. Código Bibliográfico: 1999 Physical Review B., 59.5498B, doi : 10.1103/physrevb.59.5498 . ISSN 0163-1829.

Uchida, Y y Sakai, H. Efectos inducidos por la luz en a-Si: películas H y células solares, Mat. Res. Soc. Symp. Proc., Vol. 70,1986

Nelson, Jenny (2003). La física de las células solares. Prensa del Imperial College.

Efecto Staebler-Wronski en PV de silicio amorfo y procedimientos para limitar la degradación Archivado el 6 de marzo de 2007 en Wayback Machine, EY-1.1: 28 de octubre de 2005, Benjamin Strahm, Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas.

Arya, R. R., Catalano, A., & Oswald, R. S. (1986). Amorphous silicon p‐i‐n solar cells with graded interface. Applied physics letters, 49(17), 1089-1091.

Dutta, U., & Chatterjee, P. (2004). The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters. Journal of applied physics, 96(4), 2261-2271.

Crandall, R. S. (1982). Transport in hydrogenated amorphous silicon p‐i‐n solar cells. Journal of Applied Physics, 53(4), 3350-3352.

Hack, M., & Shur, M. (1985). Physics of amorphous silicon alloy p‐i‐n solar cells. Journal of Applied Physics, 58(2), 997-1020.

Asensi, J. M., Merten, J., Voz, C., & Andreu, J. (1999). Analysis of the role of mobility-lifetime products in the performance of amorphous silicon pin solar cells. Journal of applied physics, 85(5), 2939-2951.

Hack, M., & Shur, M. (1983). Theoretical modeling of amorphous silicon‐based alloy p‐i‐n solar cells. Journal of applied physics, 54(10), 5858-5863.

Jarolimek, K., De Groot, R. A., De Wijs, G. A., & Zeman, M. (2009). First-principles study of hydrogenated amorphous silicon. Physical Review B, 79(15), 155206.

Dhariwal, S. R., & Rajvanshi, S. (2003). Theory of amorphous silicon solar cell (a): numerical analysis. Solar Energy materials and Solar cells, 79(2), 199-213.

Ching, W. Y. (1982). Theory of amorphous Si O 2 and SiOx. I. Atomic structural models. Physical Review B, 26(12), 6610.

Jarolimek, K., De Groot, R. A., De Wijs, G. A., & Zeman, M. (2009). First-principles study of hydrogenated amorphous silicon. Physical Review B, 79(15), 155206.

Hack, M., & Shur, M. S. (1984). Theoretical studies of the electric field distribution and open‐circuit voltage of amorphous silicon‐based alloy p‐i‐n solar cells. Journal of applied physics, 55(12), 4413-4417.

Dong, J., & Drabold, D. A. (1998). Atomistic structure of band-tail states in amorphous silicon. Physical review letters, 80(9), 1928.

Dhariwal, S. R., & Rajvanshi, S. (2003). Theory of amorphous silicon solar cell (b): a five layer analytical model. Solar energy materials and solar cells, 79(2), 215-233.

Derrick, G. H., McPhedran, R. C., & McKenzie, D. R. (1986). Theoretical studies of textured amorphous silicon solar cells. Applied optics, 25(20), 3690-3696.

Hubin, J., Sauvain, E., & Shah, A. V. (1989). Characteristic lengths for steady-state transport in illuminated, intrinsic a-Si: H. IEEE transactions on electron devices, 36(12), 2789-2797.

Sauvain, E., Shah, A., & Hubin, J. (1990). Measurement of ambipolar mobility-lifetime product and itssignificance for amorphous silicon cells. In Conference Record of the 21th IEEE Photovoltaic Specialists Conference (Vol. 2, pp. 1560-1563). Institute of Electrical and Electronics Engineers (IEEE).

Shah, A. V., Sauvain, E., & Hubin, J. (1989). Characteristic lengths for transport in illuminated intrinsic a-Si: H. Journal of Non-Crystalline Solids, 114, 402-404.

Hubin, J., Shah, A. V., & Sauvain, E. (1992). Effects of dangling bonds on the recombination function in amorphous semiconductors. Philosophical Magazine Letters, 66(3), 115-125.

Hubin, J., & Shah, A. V. (1995). Effect of the recombination function on the collection in ap—i—n solar cell. Philosophical Magazine B, 72(6), 589-599.

Sauvain, E., Hubin, J., Shah, A., & Pipoz, P. (1991). Effect of the dangling-bond charge on the ambipolar diffusion length in a-Si: H. Philosophical magazine letters, 63(6), 327-333.

Shah, A., Hubin, J., Sauvin, E., Pipoz, P., Beck, N., & Wyrsch, N. (1993). Role of dangling bond charge in determining μτ products for a-Si: H. Journal of non-crystalline solids, 164, 485-488.


Refbacks

  • There are currently no refbacks.