Open Access Open Access  Restricted Access Subscription Access

Using the Optical Properties of Liquid Crystals for Conversion an Electrical Signal into a Colored Light Beam

Shoikhedbrod Michael

Abstract


Today a special place in practice is occupied by devices that convert an electrical signal or heating created by an electrical signal into a colored light beam. The article presents a description of the essence of using of the optical properties of nematic and cholesteric liquid crystals in the operation of liquid crystal televisions that convert a television electrical signal into a color image on a television screen. A developed color musical device “enlivens” a drawing by different colors in accordance with the frequency spectrum of the electrical signal emanating from a musical electronic device on a black panel and an indicator of sorption processes highlighting the surface of the mineral coating by collector in red, the main mechanism of which is the sequential conversion of the electrical signal into thermal energy and the thermal energy released at the same time into a change of the color of the cholesteric crystal.

Full Text:

PDF

References


Schadt M. Liquid crystal materials and LCDs, Annu. Rev. Mater., 1997, 27, Pp305-379.

Tomilin M.G., Nevskya G.E. Display on the liquid crystals, SPbGU, ITMO, 2010.

Srivastava A.K., Tocnaye J.L., Dupont L. Liquid Crystal Active Glasses for 3D Cinema, Journal of display technology, 2010, 6(10).

Lu C., Chien L. A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection, Appl. Phys. Lett., 2007, 91.

Kozachenko A., Sorokin V., Kolomzarov Y., Nazarenko V., Zelinskii R., Titarenko P. Multicolor surface-stabilized cholesteric LCD, Proc. SPIE 3318, Liquid Crystals: Physics, Technology, and Applications, (1 February 1998). https://doi.org/10.1117/12.300033

Jin Y., Hong Z, Kwon S. An effective way to achieve full color cholesteric liquid crystal displays with single liquid crystal mixture and layer, Journal of the Society for Information Display, 2014; 22 (11): pp581-587.

Zola R, Nemati H., Yang Y. Characteristics of dual mode reflective cholesteric display, Journal of the Society for Information Display, 2013; 21 (1): PP 22-28.

Bae K., Cha U., Lee Y., Moon Y. Single pixel trans missive and reflective liquid crystal display using broadband cholesteric liquid crystal film, Optics express, 2011; 19 (9): Pp8291-8296.

Khan A., Huang X, and Doane J. Low-power cholesteric LCDs and electronic books, Proc. SPIE 5443, Defense, Security, and Cockpit Displays, (15 September 2004); https://doi.org/10.1117/12.561280

Shibaev V.P. Liquid crystals - cholesterics, Chemistry and Life, 2008; No. 7.

Averyanov E.M. The special feature of the local field of light wave in the cholesteric liquid crystals, liquid crystals and their practical use, 2009; 28(2): pp 21 - 30.

Tomilin M.G., Nevskya G.E. Display on the liquid crystals, SPbGU, ITMO, 2010.

Shibaev V.P. Liquid crystals, Nature, 2012; No. 1.

Srivastava A.K., Tocnaye J.L., Dupont L. Liquid Crystal Active Glasses for 3D Cinema, Journal of display technology, 2010; 6(10).

Popov P., Honaker L.W., Kooijman E.E., Mann E.K., Jákli A.I. A liquid crystal biosensor for specific detection of antigens, Sensing and Bio-Sensing Research 2016; 8: pp31–35.

Klyukin L.M., Morozov S.Yu. The analysis of the contemporary methods of diagnostics of breast cancer, medical technology, 2014; No.3.

Dogic Z., Sharma P., Zakhary M. Hypercomplex Liquid Crystals, Annual Review of Condensed Matter Physics, 2014; 5.

Humar M., Musevic I. 3D micro lasers from self-assembled cholesteric liquid crystal microdroplets, Optics Express, 2010; 18(26); 26995-27003.

Lu C., Chien L. A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection, Appl. Phys. Lett., 2007; 91.

Herzer N., Guneysu H., Davies D., Yildirim D., Vaccaro A. Printable Optical Sensors Based on H- Bonded Supramolecular Cholesteric Liquid Crystal Networks, J. Am. Chem. Soc., 2012; 134 (18): pp7608–7611.

Kim K., Park K., Lee J., Yoon T. Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection, Optics Express, 2010: 18(16): pp16745-16750.

Hsiao Y., Wu C., Chen C., Zyryanov V., Lee W. Electro-optical device based on photonic structure with a dual-frequency cholesteric liquid crystal, Optics Letters, 2011; 36(14): pp2632-2634.

Bitar R., Agez G., Mitov M. Cholesteric liquid crystal self-organization of gold nanoparticles, Soft Matter, 2011, 7, 8198-8206pp.

Shoikhedbrod M.P. Cholesteric liquid crystals, Lambert Academic publishing, Toronto, 2017.


Refbacks

  • There are currently no refbacks.